If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+16t-48=0
a = 16; b = 16; c = -48;
Δ = b2-4ac
Δ = 162-4·16·(-48)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{13}}{2*16}=\frac{-16-16\sqrt{13}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{13}}{2*16}=\frac{-16+16\sqrt{13}}{32} $
| (y−2)^2+(y−2)(y+5)=9 | | 9(.75)+1.25x=34.75 | | -26=-7x+9 | | 4n+4n=-24 | | P=3q+6 | | (y-2)^2+(y-2)(y+5)=9 | | x^2-6x+9=-20 | | 45m+4=61m | | -3(x-5)=2x-5 | | 1.5x-4=8 | | 2x-4=x+50 | | 8(3x)+5(3)=93 | | y=1/3(12)-1 | | 2+a/6=15 | | -10b+15b+20b−5=20 | | -38=-12x+10 | | 123+(x+16)=180 | | 72=18n | | 123+(x+16)=18- | | -11+x/3=-27 | | 50y^2-60y=- | | 17x+14=4×-2 | | x/21-1=-4 | | 20+15x=500 | | X=-y+73 | | -1/3-(-3/5)=x | | x—6=8 | | 3.1n=5.27 | | 28,874.31-x=11,290.21 | | 7=m/8=-2 | | 19=5+.5x | | 1-7p=-7p-2p-5 |